Today’s Project Applications Process
Overview:

While logically sound, the existing project application process often introduces significant delays in a new contrib author’s journey from initial sandbox repository to ‘Full Project’ status. These delays can serve as a demotivator for ‘full project’ applicants, and discourage potential contributors from further participation.
On the other hand, the process of reviewing project applications before promotion to ‘full project’ status is intended to improve the overall stability and quality of the Drupal contrib space, ease the burden of the security team (through early identification of potential security issues in contrib modules), and offer a mentoring/education opportunity to guide new contributors in the proper/Drupal way of doing things.
This document outlines the underlying need for, and presents a proposal for, a new Drupal project application process built on the concept of a tiered application process, with associated escalating levels of review (and corresponding classes of contributed modules).
I can’t claim the contents of this document as solely my idea ... most of the suggestions within came directly from others in the community, in various forums and posts across both d.o and g.d.o. All I’m doing is attempting to formalize the statements, define a solid proposal for the application process moving forward, and perhaps supply some food for thought and a starting point for the related core conversation to be held at DrupalCon London next month.

Goals of the Project Application Process

Mission Statement
The Full Project Applications review process will ensure that new contributors have a basic understanding of the Drupal Community’s core values concerning contributing code to Drupal.org, as well as to promote lasting, long-term contributions to the project.

Supporting Goals and Principles

While they are not stated explicitly, the core values supported by the above mission statement are:

· The continued improvement of quality and stability of modules in the Drupal contrib space,

· The mentoring and support of new contrib authors, encouraging use of drupal best practices and approaches

· The encouragement and fostering of further contributions and involvement in the community, and

· Ensuring that modules abide by Drupal legal and security requirements.
Secondary Goals
In addition to the above, the process also has adopted some secondary goals, which are slightly more subjective:
· Encouraging collaboration with existing modules, reducing module duplication where possible

· Encouraging understanding and proper use of Drupal APIs

· Encouraging the following of established coding standards
· Encouraging the inclusion of a minimum level of documentation
Additional Considerations

While they may not be part of the existing process, I would also suggest the following should be considerations of the project application process:

· Demonstrated understanding of Git, the Drupal packaging systems, and project branches/releases

· Demonstrated understanding of the patch creation/application processes

· Demonstrated understanding and use of issue queues and statuses
· Essentially validate that the applicant will be a good maintainer, and provide guidance in the areas in which they may fall short.
Where the existing process breaks
There are a number of pain points within the existing process. This next section will attempt to identify and elaborate on some of the larger issues that I have witnessed in my relatively short experience with the new project application process.
Pain Point 1: Timelines

Application to initial review

Ideally, a new applicant should not have to wait more than a few days before their application is reviewed. In practice, some applications are sitting idle in the queue for 4 weeks or more before receiving their first comments. This leads to scenarios where the application frustration isn’t ‘when will I be approved’ … it’s ‘when will I be reviewed!’.

Initial Review to Re-Review / Orphaned Reviews

In an ideal world, a project review would identify any issues that need to be addressed, the maintainer would address those issues, and then the application would be approved.
However, in practice, this rarely occurs. Reviewers don’t necessarily catch all potential issues in the first pass, and the applicant could potentially take weeks to respond to issues pointed out in the review. Even when the applicant responds immediately, the ‘fix’ may introduce additional issues, the reviewer may miss the response, or the reviewer may simply get busy with some other unexpected initiative. As a result, applicants too frequently find themselves waiting weeks for a follow-up review after addressing any issues raised in an initial pass.
Some reviews may bounce back and forth between ‘needs review’ and ‘needs work’ a half dozen times before being approved … and at up to 4 weeks per cycle, this leads to significant delays in the approval process.

RTBC to Approved

Once a review has been marked RTBC, the process falls to a Git Admin to assess the quality of the review, ensure no major issues have been overlooked, and grant the applicant the ‘promote full projects’ permission. Given the level of knowledge and trust required within this role, it has traditionally been reserved for a limited number of trusted individuals … who, by that trusted nature, tend to be very busy with other initiatives.

After finally working their way through and finally being given the green light for approval, applicants sometimes find their applications sitting in RTBC status for a week or more … which is seen as just one more unnecessary delay in an already frustrating process … while they wait for one of the busy Git admins to finally happen along in a spare minute. In many cases, the Git Admin then catches something that was missed in the initial reviews, bumps the status back to ‘needs work’, and the cycle starts over again.
Implementing Improvements (i.e. General Inertia)
Since I joined the code review group (and even before), there have been a number of excellent suggestions for improvement to the existing process. In addition, there have been numerous discussions regarding the merits of various improvement options. While there has been some headway (especially in the areas of documentation), general inertia causes most of these to become no more than ‘lots of talk, and little action’.

Perhaps it is due to the do-ocracy of Drupal … and admittedly, frustration with this lack of action did inspire me to go chase after the automation of coder reviews for new project applications (still in progress). In any case, it’s my hope that putting forward a solid and defined proposal and roadmap will help inspire others to step forward, pick up one of the various components, and chip in to help with the ‘action’ component, without which, the ‘talk’ is meaningless.

Pain Point 2: Quality of Applications

Incomplete Applications

Occasionally, reviewers settle down to perform a review, and find that the applicant hasn’t taken the basic steps requested of the application process. Often, we’ll see project applications without sandbox links, with empty sandbox repositories, or with no description of what the module is actually supposed to do.

This was a significant issue for full project applications which were moved over from the CVS queue.

Whether the issue is one of applicants not reading the application process documentation, not understanding the application process documentation, not knowing about the application process documentation, or simply stumbling over the application queue without any previous knowledge of the process, incomplete applications serve as a significant de-motivator for application reviewers, who often need to wade through a number of incomplete or otherwise sub-standard applications before finding one which is actually ready for review.

While the code review team has put some significant effort into improving the project application documentation to try and reduce the number of incomplete applications appearing in the application queue, it will take some time to verify whether these changes actually reduce the frequency of incomplete application appearing in the queue.

Code Quality
The project application process has been positioned as a mentoring opportunity for new contributors, and in many aspects, it does serve well as an education tool for full project applicants. However, the process requires a finished module before applicants can submit their code for approval. In many cases, the code for the submitted project may be of an unacceptable quality (usually due to security issues). More often, the code is perfectly fine PHP code, but doesn’t take proper advantage of any of Drupal’s APIs.
In my opinion, treating the project application process (as it stands today) as a mentoring opportunity is better than having no mentoring at all … but in practice, this mentoring occurs too late in the development cycle to maximize the value-for-time efficiency equation. Instead, this mentoring relationship should begin at the start of the design/development stage to ensure that proper use of Drupal APIs is considered from the beginning of development, to reduce the potential for rework and simplify the review process.

Pain Point 3: Sandboxes

The move to sandboxes with the Git migration was an enormous step forward for new project development. Access to version control and issue queues during the development and testing stages of a project is invaluable to contrib module developers. However, I feel that the sandbox concept as it stands today falls just a little bit short.

Sandboxes require Git
Yes, this was a conscious decision. We want to protect against the possibility of uneducated users stumbling across (and downloading) dangerous sandbox code. So as a result, the decision was made to not allow the creation of releases in project sandboxes.

However, contrib authors depend on feedback from their clients/testers to identify bugs in their pre-released projects. These clients and testers are typically end-users of the module functionality. Developers (and only some of them!) understand Git … but end users do not.

In creating a hurdle to protect the ‘stupid user’, we impose a testing barrier on the new contrib author. Most of their clients and testers (and even some of the developers themselves) have never actually used anything other than tarballs and zip files. In many cases, it’s the only approach they know … and even .tar.gz goes beyond the comfort zone of many testers, clients, and end-users.

By making it difficult for testers, we limit the amount of pre-release testing and feedback which can be solicited by the developer of a new sandbox project … as well as increasing the amount of time that developer ends up spending on support tasks, rather than the improvement of their module.

Sandbox Stigma

A side effect of the aforementioned decision is the perceived stigma which has been associated with sandboxes as a result. To a new contrib author, the perception is that their sandbox project isn’t a ‘real’ project until it is promoted to full project status.

Considering the significant delays present in the application queue, and contrasting the applicant’s experience with the fact that approved users can immediately create as many ‘full projects’ as they like, many new project applicants get the sense that they are being treated as second-class citizens. Some applicants have expressed that it felt they were being stonewalled and made to jump through hoops before being allowed to create ‘real’ projects, relative to others (already approved) who were actively producing loads of inferior products … and in some cases, projects which are direct competitors or duplicate modules relative to the applicant’s own project. (To add insult to injury, applicants would then be asked to explain why their module should be allowed in contrib, when there was already an existing duplicate project in the contrib space, even though the duplicate was created in the meantime while their module was stuck in the application queue!)
This stigma arises for a number of reasons … lack of release capability, lack of a project namespace, lack of press (though sandboxes do show up in regular search, just not under ‘modules’) and the ‘full’ project label itself.
Pain Point 4: Lack of Reviewers

While there is a significant lack of metrics available regarding the module review process, it’s safe to say that the existing process is not maintainable with the current number of active reviewers. Even if the current team was able to keep pace with the incoming applications (which is approximately correct), there are not enough reviewers available to clear the current application backlog without a significant sustained effort (and the corresponding burnout which would result).

There have been numerous discussions within the code review group regarding ways to bring in more reviewers. However, while the process allows for anyone to take on a module review, there has been a fair bit of concern suggesting that potential new reviewers feel intimidated by the process, or hesitate because they either don’t know how to review, or don’t feel qualified to perform a full review. There is also a chance that a sudden influx of new reviewers could lead to a lack of consistency in reviews.
Pain Point 5: Module Duplication

Module duplication is a growing concern within the Drupal community, which values joining forces on improving one project rather than building multiple competing modules with different features and overwhelming end users with choices. Frequently, projects come forward which would be better suited as enhancements or feature additions to existing contrib projects … or, in some cases, which are direct equivalents of existing projects.
As this is one of the only gates involved in the module contribution process, reviewers strive to ensure that new contrib authors understand the importance of collaboration, and searching for an existing solution before adding a new module to the contrib repositories. Next to timelines, debates regarding module duplication are a large source of frustration and conflict with project applicants during active reviews. My first exposure to the code review process happened during the middle of a disagreement between two reviewers regarding whether an application actually constituted ‘duplication’ of an existing module … which, unfortunately, served to kill the applicant’s spirit before they even got a foot in the door.
In a perfect world, the module duplication check would occur before the contributor has written a single line of code. This allows the opportunity to redirect a contributor towards a collaborative effort (building on an existing module) before they have invested any time or effort into creating their own solution. This helps to eliminate wasted effort … and, more importantly, takes place before the applicant develops a strong ‘emotional’ attachment to their own code/contribution/approach.

Of course, this ideal situation does not fit well within the Code Review process, which requires a ‘completed’ module/theme before an applicant can even submit their full project application.

Pain Point 6: Applicant Patience and Perceptions

As society trends more and more towards the concept of ‘instant gratification’, there will be more and more applicants for whom an answer tomorrow is two days too late. While little can be done to satisfy these folks, I have to sympathize with applicants who post an application and then receive absolutely no feedback for weeks at a time.

As time passes without feedback, applicants start to wonder if perhaps their application was missed, or is being ignored … especially as there are no real expectations communicated back to applicants as to how long the application process may take. While being made to wait up to four weeks for an initial review, as well as for subsequent followup, this leaves a lot of time for applicants to grow impatient … especially when they realize that there are no hurdles, limitations, or reviews imposed on anyone who has successfully been approved; or when they see official modules in contrib duplicating the very same issues that they are being told are show-stoppers for their application.
This in leads to an illusion of inequality … to applicants, there is a perceived double standard - the lax standard applied to those who happened to get in before the project application process was introduced, versus the much stricter standard applied to applicants who aren’t being allowed in later. This in turn leads to some applicants sensing they are being treated as ‘second class citizens’ within the community, which kills their contributing spirit/motivation.
Pain Point 7: Project Approval versus Developer Approval

While the full project application process is just one process, successful completion of this process means two things things:
· The module is vetted as ‘ready for inclusion’ in the official contrib project lists, and can thus be promoted to an ‘official’ project with an ‘official’ namespace … in other words, it becomes a ‘real’ project.
· The applicant is vetted as ‘ready to be trusted with the “promote projects” ability’, and is thus let loose to create whatever future official contrib modules projects they want, no longer subject to limitation or review … in other words, they are promoted up from ‘second class citizen’ for those applicants who might perceive it this way.
 With the existing process, these two items are interdependent. If you approve the module, you approve the reviewer. If you deny the module, you deny the reviewer. There is no separation of the ‘project approval’ process from the ‘developer approval’ process.
Pain Point 8: So close, but yet so far!

Occasionally, an applicant runs through the long, frustrating new project application process, waiting for reviews and addressing the issues found in those reviews … only to have a reviewer come along at the end and point out ‘this module duplicates X’, or ‘this module should be a feature request on Y’. Even if the contributor’s submission has successfully demonstrated adherence to best practices and knowledge of the Drupal APIs, the patience to listen and implement suggested improvements, and the dedication to stick with it through the entire frustrating code review process … a ‘module duplication’ claim essentially blocks the entire application. For that user to be granted the ‘promote projects’ ability, they must go back, develop a new module, and start over at square one of the project application process (and all of the associated waiting which goes along with it) … when their only real fault was not performing a thorough enough search before coding their project.
In my opinion, there is a need to separate the process of ‘getting a module review’ from the process of ‘getting a project promoted’ from the process of ‘granting access to create “real” projects directly’. In the situation described above, I don’t see any reason to block the ‘full project permissions’ role … having the module denied should be lesson enough for that user to not make the same mistake again.
The Proposal

So … where do we go from here?

The rest of this document outlines a tiered ‘application’ process, with different ‘classes’ of project, and escalating levels of review.

In addition to improving on the issues described earlier, this proposal attempts to address the following process goals:

· Enforce Licensing requirements

· Enforce Security requirements

· Discourage project “Name Squatting”

· Encourage proper use of Drupal APIs

· Encourage consistency in the application of coding standards

· Discourage community from accessing/use of unsafe contributions

· Encourage community sharing of code/modules

· Discourage further proliferation of Module Duplication

· Discourage perpetual ‘beta’ cycles

Overview

The general approach with this proposal is to break the current project application process into a number of much smaller, more manageable steps; while still attempting to maintain the integrity of projects which are promoted to the equivalent of ‘full project’ status. Progression through each of the steps would be required to raise the project from one ‘class’ of project to the next; and each project class would come with progressively stricter review requirements.

The hope is that through breaking the journey from sandbox concept to full project into a number of smaller progressive steps, where the requirements for each of these steps are clearly defined, the process outlined in this proposal will:

· Allow new contrib authors to immediately get their project out the door without playing a ‘waiting game’
· Allow more immediate opportunities for feedback for new contrib authors, by simplifying the basic requirements at early stages of the process, thus facilitating more participation from the general Drupal community,

· Provide more opportunities for progression, and thus more opportunities for positive reinforcement (and the associated sense of gratification) which comes along with the clearing of each milestone,
· Provide a well-defined roadmap for new contributors, so that it is always clear what the ‘next step’ requirements are,

· Encourage continuous improvement of contributed projects as they work through the process, and

· Provide a framework in which participants can put in as much or as little effort as they want (and reap the associated rewards!)
Whether you phrase this as a ‘badges’ approach, a ‘ladder’ approach, a ‘gates’ approach, or a ‘staged progression’, the concept is the same … there would exist a few different classes of contrib projects, and progression between each class and the next would have its own set of tasks, checks, and requirements.

The ‘Contrib Project’ Classes Defined
As mentioned, the root of this proposal is centered around the use of progressive classes of contrib projects. These classes would roughly align with the regular ‘-dev’, ‘-alpha/beta’, ‘-rc’, and ‘-1.0’ release cycles … and progression between each class and the next would have its own set of project requirements.

This proposal doesn’t suggest how the different project classes would be labelled or displayed on Drupal.org … this is seen as a follow-up discussion which can occur if the underlying fundamentals of this proposal are accepted as an appropriate evolution of the full project application process.

 “Un-certified” projects

Description

The first class of project would be the ‘Un-certified’ project. Un-certified projects are those which have no more than a ‘-dev’ release, do not have an official namespace, and would roughly equate to today’s ‘sandbox’ projects. In fact, un-certified projects would only be allowed to exist within a sandbox repository.

However, this proposal would open up limited release/packaging capabilities to these sandbox projects … allowing the publishing of –dev releases (and only –dev releases) within the sandbox environment.
Opening up the sandboxes to official –dev packages addresses the git issue outlined in “Pain Point 3: Sandboxes” earlier in this document; and it also lends greater legitimacy to sandbox projects (helping them feel more like ‘real’ projects), thus reducing the ‘sandbox stigma’ described earlier.

‘Uncertified’ projects would likely contain some type of ‘Not Verified’ disclaimer text on their project page, with a friendly ‘use at your own risk’ message. (For example, “Note: This project has not been reviewed to ensure security, compliance with Drupal coding standards, or proper use of various Drupal APIs”.)

 Requirements

As the ‘entry-level’ class of contrib project, there would be no minimum requirements for the creation of an ‘un-certified’ project. Again, this is essentially an extension of today’s “sandbox” projects category … there is no security review, code review, or peer review required - anyone would be able to create and publish their –dev release within their sandbox repository.
“Pending” Projects

Description

A “Pending” project is one that has moved out of the ‘–dev’ state, and has started down the path towards an official point release. These projects would be granted an official namespace and non-sandbox project page (similar to a ‘promoted’ project today). Ideally, a ‘pending’ project would have at least a ‘-rc’ release; though the number of existing projects in ‘perpetual beta’ would necessitate either the grandfathering of any existing ‘full projects’ to ‘pending’ status, or introduction of another class to represent these ‘grandfathered un-certified’ projects.
Once promoted to ‘pending’ status, contrib authors would be allowed to publish any releases from their git repository. However, similar to Un-certified projects, a ‘Pending’ project would likely contain some sort of disclaimer text on the project page, and any ‘point’ release would not be officially included in the security team’s scope of responsibility until promoted to a ‘certified’ project. (A thorough review, roughly equivalent to today’s ‘project application’ reviews, would be one of the requirements before a project could be promoted out of ‘pending’ status.)
Requirements

Pending projects would need to meet the following requirements:
· Have an –rc release (possibly also allow alpha/beta – see sidebar discussion below)

· Meet Drupal licensing requirements

· Have a Formal ‘project page’ description
· Module runs through Coder cleanly (ignoring false positives)

· Meets basic coding standards (regarding namespacing, documentation blocks, etc.)
· Contain a list of related/similar modules (either on the project description page or in the issue queue), and explanation of how this particular project differs from each
Projects which did not meet all of the above requirements would not be allowed to progress to ‘Pending’ status, and existing ‘Pending’ status projects which were found to be in violation of these requirements (and did not address them in an appropriate timeframe) would risk being unpublished or demoted.

Sidebar: Motivation and Issues with the ‘-rc’ restriction

The goal in setting a ‘-rc’ requirement for the ‘pending’ state is to discourage folks simply renaming –dev branches to –beta in order to claim a namespace, without actually making any changes to their code ... in other words, as a means to limit the potential for ‘namespace squatting’. In addition, it provides an additional incentive for contributors to upgrade their modules out of perpetual beta, and into one of the ‘more stable’ release categories, which should in turn help with adoption of their module and the overall Drupal contrib project status metrics. (Consider http://webchick.net/node/89)

The problem arises with the large number of existing projects in the contrib space, which only have existing –dev, -alpha, or –beta releases. Establishing a min release requirement for new projects before they can claim a namespace, when there already exists namespaced projects which do not meet the minimum requirements, will still lead to the appearance of a ‘double-standard’ for new project applicants.

This can be partially mitigated through how the classes are ‘displayed’ on Drupal.org. For example, if using badges, the grandfathered projects without an ‘-rc’ release could display the same ‘un-certified’ badge as a sandbox ‘-dev’ project. Alternatively, a new project category may be required to represent projects in-between the ‘un-certified’ and ‘pending’ states.

Triggers initiating the ‘Un-Certified’ to ‘Pending’ Progression
In addition to complying with the above requirements, a module would have to satisfy ONE the following triggers before being considered for progression:
· (Default) Exceed a minimum required ‘soak period’ as a –dev module.
· Essentially, modules would be promoted from sandbox to full project after a period of x weeks/months. This soak period allows time for the project maintainer to demonstrate competence as a maintainer through responsiveness, user interaction, evolution of the code, and active queue management.

· Having a time-based trigger also means that modules which are not widely used or publicized can eventually claim their own namespace as well … even if they are less well-known or have only one or two actual end-users.
· (Optional) Request an ‘Official’ peer code review

· In order to accelerate the progression from ‘un-official’ to ‘pending’ (ie. Bypass the ‘soak’ period), a project maintainer could apply via a project promotion issue queue, requesting a ‘peer code review’.

· The process for this review would be similar to the existing project application reviews, where another community member would validate that the project meets the minimum requirements for promotion, and then mark the issue RTBC to signal that the project is ready for promotion out of ‘un-certified’ status.

· However, the actual content of the review would be considerably less than the existing review process … and essentially consist of running the module through Coder, validating licensing requirements, and checking that functions and variables are properly documented and namespaced.

· In theory, anyone in the community should be capable of validating these checks (and quickly), rather than depending on a dedicated review team.
· If a review request is made, and for some reason it does not get addressed, the module would still be eligible for automatic promotion once the default soak period has expired (assuming that it meets the other base requirements as well).
· (Optional) Reach a certain threshold of reported Drupal sites using the module (Suggested: 50? 100?)
· If a module is widely used (as identified through the ‘Reported installs’ metric on the project page), it would be eligible for promotion without having to wait for the end of the ‘soak’ period or a peer review.

· Essentially, this provides a fast-track option for popular modules.

· In theory, higher usage should either indicate a certain level of stability, or at the very least result in higher levels of end-user testing, helping improve the stability of the module faster than one with a smaller end-user audience.
· (Optional) The ‘Community Fastrack’ approach

· This option would allow for community members with the appropriate rights to immediately promote modules to ‘pending’ status, without needing to meet one of the ‘soak’, ‘review’, or ‘threshold’ triggers above.
· This approach allows for the quick promotion and publicizing of important or long-awaited features/modules and other community-driven initiatives.

· This permission would be held by a restricted group of trusted community members, similar to the ‘Git Administrator’ role today.

· While restricting this permission could lead to the impression of favortism or classism if it were the only way to promote a module, having it as one of many avenues for promotion should help mediate this concern.

“Certified” Projects

Description

Certified projects represent the final step in the project evolution. Certified projects have at minimum one point release … and by the time a project is promoted to ‘certified’ status, should also abide by all security, licensing, and coding standard requirements.

“Certified” projects would become the primary focus of the security team (whereas “pending” projects with point releases would be a lower priority, until they are promoted to “certified”).
Requirements

To be promoted to ‘certified’ status, a project must exceed all of the existing requirements for ‘Pending’ status, plus:
· Have an official point release (ie. -1.0)

· Abide by all recommended Drupal coding standards (though many existing modules would likely be grandfathered)

· Undergo a technical code review for security, translations, and proper use of Drupal APIs (essentially the same as today’s ‘code review’ process).
In addition, the project maintainer should be able to demonstrate competence as a maintainer, through a history of active issue queue maintenance.
Triggers initiating the ‘Pending’ to ‘Certified’ Progression

In addition to complying with the above requirements, a module would have to satisfy ONE the following triggers before being considered for progression:

· (Default) Request an ‘official’ peer code review

· Project maintainers who would like to promote their project from ‘pending’ to ‘certified’ would request an official peer code review, essentially leveraging the same process that is used for ‘full project’ applications today.
· Once the review has been completed, and any issues addressed, another community member would validate that the project meets the requirements and mark the promotion issue RTBC to signal that the project is ready for promotion to ‘Certified’ status.
· Unlike the promotion to the ‘pending’ state, the ‘certified’ review would have a much stricter set of requirements, essentially mirroring those required for today’s ‘full project’ status.
· If a review request is made, and for some reason does not get addressed in a timely matter, the project maintainer could also pursue one of the other triggers which would make them eligible for ‘certified’ status.
· (Optional) Reach a certain threshold of reported sites using the module AND exceed a minimum required ‘soak period’ with at least an ‘-rc’ release
· This trigger is based on the argument that high usage infers some level of community acceptance of the module, and speaks to its stability/security (while not actually guaranteeing it).

· An associated ‘soak period’ is included with this trigger to provide sufficient time for bugs and other issues to bubble up to the surface via the project’s issue queue.
· The threshold for this stage would be significantly higher than that for promotion to the ‘pending’ state. (Suggestion: 300? 500? 1000?)

· (Optional) The ‘Community Fastrack’ approach

· Essentially, this option would allow for community members with the appropriate rights to immediately promote modules to ‘certified’ status, even in cases where the maintainer has not formally requested a peer code review (or in cases where the project does not have a formal maintainer).

· This permission would be held by a restricted group of trusted community members, similar to the ‘Git Administrator’ role today.
· However, community members promoting a module through this approach would still be responsible for creating a ticket in the project promotion queue, indicating they have reviewed the module and found no issues, validating that it meets the criteria for ‘certified’ status, and marking the issue RTBC.
· To complete the promotion, another community member (other than the one who created the RTBC ticket) would validate the ticket and review before promoting the project to ‘certified’.

· Alternatively, the ticket creator could solicit another community member to perform a review of their own and post a comment in the project promotion issue to confirm that they have also reviewed the module and feel it is ready for promotion, after which the original community member could promote the project themself.

Sanity Check – Wait a Minute Here …

If we’re Still Doing Manual Code Reviews - How does This CHANGE Anything?
If it seems that the process of going from ‘Pending’ to ‘Certified’ looks an awful lot like today’s ‘Full Project Application’ process … well, you’re right. If that’s the case, and this proposal doesn’t make drastic changes to the code review process itself, how can it possibly solve anything?
While most would agree that the current review process is broken, this does not infer that it is not necessary. Having a code review process helps to improve the general quality and stability of the Drupal contrib space, as well as ease the load on the security team by identifying major issues before they are exposed in the wild. And as work-intensive as it is … manual code reviews are really one of the best ways to identify these issues.
So how does the proposal in this document address the ‘new project application’ pain points, identified earlier?
Clears the Backlog (reducing timelines)
While the current process has a rather large backlog of applications, with average response wait times fluctuating between 4 and 7 weeks at the extreme, the truth is that the total number of projects in ‘needs review’ status at any given time has actually remained relatively stable (between 160 and 180) for the last 6 months. This statistic would seem to infer that the number of reviews being performed is roughly keeping pace with both new applications entering the process, and projects being moved from ‘needs work’ to ‘needs review’ by existing project applicants.
As virtually none of the existing project applications have anything resembling ‘release’ branches in their sandbox repositories, the vast majority would immediately classify as ‘Un-certified’ projects. With no ‘review’ requirements for ‘un-certified’ projects, the existing applications would be closed with a description of the new project classes, instructions for how to create an official ‘-dev’ release in their sandbox repository, and an explanation describing how to apply for future project promotions once they meet the requirements.

With this, the existing (and imposing) application backlog is essentially wiped clean … and from that point forward, reviewers can focus on addressing new ”Certified” project promotion requests as they come in.

Reducing the ‘Sandbox Stigma’

By granting the ability to publish –dev releases within sandbox repositories, we eliminate the git-related concerns described earlier (such as module testers desiring tarballs), as well as reduce the stigma associated with sandboxes as not being ‘real’ projects.
ReduceD Number Of Applications (Reducing Timelines)
First time contributors have a number of different motivations for applying for ‘full project’ status. For some, it is the desire to claim their project namespace. For others, the ability to support ‘release’ tarballs may be a motivating factor. Some may covet the unrestricted ability to create additional projects in the future, while others may simply want to share an existing piece of code with no intention of developing additional modules in the future. And for some contributors, it may simply be the sense of accomplishment or acceptance that comes along with having their project approved.

Whatever their motivations, each of these contributors must go through the complete “full project application process” in order to achieve their goals in today’s environment. However, not all are looking for the full suite of benefits that a project approval delivers. For example, a quick look through the existing contrib library suggests that many maintainers are completely happy with ‘perpetual beta’ projects.

By limiting the code review requirement to those maintainers with ‘release-ready’ projects, and simplifying the requirements for those maintainers simply looking to release a tarball or claim their project namespace, it is expected that the volume of ‘certified’ project applications will come down relative to the existing rate of ‘full project’ applications being experienced. This in turn helps alleviate the pressure put on the review team.
Improved Application Quality

As this proposal should allow for more end-user testing and validation of contrib projects before they reach the ‘certified’ application point, and coupled with the fact that any low-hanging fruit should be addressed during the ‘un-certified’ to ‘pending’ stage, it is expected that the overall code quality of projects which reach the ‘certified’ application queue should be greatly improved. Not only does this simplify the actual review process, it also helps ease a common source of frustration for project application reviewers.
Increased Number of Reviewers
This proposal attempts to address the issue of ‘too few reviewers’ from two perspectives.
Firstly, validation of the requirements at the ‘pending’ stage are intentionally trivial to verify, and can be performed by virtually any member of the Drupal community.
Secondly, allowing sandbox releases and enforcing ‘release candidate’ soak periods should result in an increased number of end-users leveraging the functionality of the project prior to the ‘certified’ application… and by extension, increasing the pool of people who i) are familiar with the project, and ii) have a vested interest in seeing the project be granted ‘certified’ status.

While this won’t result in a huge influx of general reviewers joining the code review team by itself, it could result in increase in community members performing one-time reviews … and, in the process, helping them realize that the process of performing a review really isn’t nearly as difficult as it one might assume!
While this may not seem like much, it becomes a much larger impact when combined with the reduced number of applications coming through the queue in the first place.

Module Duplication
Module duplication is certainly a concern within the greater community … but the code review team often gets stuck with the role of ‘bad cop’ when it comes to enforcement. As discussed earlier, the module review check should really take place at the initiation of the development process, not during a post-development project approval step. As such, this proposal pushes some responsibility for enforcement of the ‘module duplication’ issue back on the general Drupal community.

That said, as a sanity check to ensure that module duplication has at least been considered, the proposal does suggest that one of the requirements of the ‘pending’ stage would be that the maintainer provide at least some indication that they have done a related module search, and provided an explanation of how their module differs from other existing contrib modules.

Some may argue that this proposal results in a relaxed enforcement of the module duplication check, relative to the existing process. This may be true … and while both are serious issues, I would counter that reducing the frustration experienced by new project contributors (and thus helping ensure a consistent stream of new contributors and innovation into the future) outweighs the need to reduce duplication within the Drupal contribution space.

Project Approval versus Developer Approval

The proposal contained in this document deals primarily with ‘project approval’, and does not necessarily address the ‘developer approval’ component of the existing process. This is intentional, and supports the earlier argument that the two should be separated.
This proposal reduces the dependency on any sort of ‘developer approval’ process in order to create ‘un-official’ or ‘pending’ projects. Instead, it focuses on the project itself, in an attempt to minimize any personal or emotional reactions associated with criticisms of the code itself.

From a developer approval perspective, one could associate the ‘full project approval’ permission with the ability to promote projects from ‘un-certified’ to ‘pending’, and the ‘git administrator’ permission (or some new ‘certify projects’) role with the ability to promote projects from ‘pending’ to ‘certified’ … though the granting of these roles should be separated from the project approval process itself. (In the spirit of true separation, the definition of how to grant these new permissions is out of scope for this proposal.)
Never back to Square one
Finally, the staged progression as outlined in this document ensures that a new applicant is never sent back to square one. At the worst case scenario, their project will be stalled at the current stage (whether that be un-certified or pending) … but never will their existing contribution to date be discarded. This proposal attempts to eliminate any sense of ‘rejection’, focusing instead on ‘this is what you need to do next’ … in the hope of fostering a spirit of continuous improvement in new project contributors.
