

World Food Programme

Drupal Standards &
Best Practice
A guide to developing Drupal modules and themes for WFP

Andrew Holgate
Tuesday, February 28, 2012
Version 1.0

2 |

Table of Contents
Development Environment .. 3

Development configuration and logging .. 3

Recommended Development Tools ... 3

Drupal Theme Development .. 4

Anatomy of a .tpl.php file ... 4

Example of node.tpl.php from Drupal core .. 4

Theme preprocessor functions ... 5

Overridding templates .. 5

Drupal Module Development ... 6

Template files ... 6

CHANGELOG ... 6

When not to use PHP ... 6

Module Dependencies (.info) ... 6

Theme hook functions .. 6

Translatable text ... 6

Comments and formatting ... 7

Files directory ... 7

Coding Standards and Validation ... 7

Drupal Standards .. 7

Naming Conventions .. 7

CSS and JavaScript .. 8

Optimisation ... 8

Caching ... 8

Views .. 8

Session data .. 8

Contributed Modules (drupal.org) ... 8

Quality Assurance and Testing ... 9

Deployment .. 9

Deployment Dry-run ... 9

Training ... 9

Technical installation and setup ... 9

Backend training ... 9

3 |

Development Environment
The development environment must be identical to the WFP production system used for the platform,

including:

 PHP version, php.ini configuration, additional modules installed and their versions

 MySQL version + configuration

 Apache version and additional modules

 Operating system and version

Development configuration and logging
The configuration of PHP must be identical to the production system with the exception of the following:

error_reporting = E_ALL | E_STRICT
display_errors = On
short_open_tag = Off
register_globals = Off
magic_quotes_gpc = Off
allow_call_time_pass_reference = Off

Regarding database configuration, slow query logging must be enabled with > 1 second being considered.

Any new development must not add any additional slow queries to the log file but in the case that they do, a

list of all database slow queries must be provided in a document which outlines steps taken to try to avoid

the long queries.

Configuration examples:

slow_query_log = 1
slow_query_log_file = /var/log/mysql/mysql-slow.log
long_query_time = 1

If you have not received the necessary configuration files and information, please contact WFP before the

development cycle begins.

Recommended Development Tools
The following Drupal-specific development modules are highly recommended to be used during

development:

 Coder1 Essential for WFP code review acceptance.

 Devel2 Highly recommended for all development

 Theme Developer3 Highly recommended for theme development

 Performance Logging and Monitoring4 Highly recommended for performance testing

 Schema5 Recommended for database verification

 Sitedoc6 Site documentation and unused themes, blocks ,etc

1 http://drupal.org/project/coder
2 http://drupal.org/project/devel
3 http://drupal.org/project/devel_themer
4 http://drupal.org/project/performance
5 http://drupal.org/project/schema
6 http://drupal.org/project/sitedoc

http://drupal.org/project/coder
http://drupal.org/project/devel
http://drupal.org/project/devel_themer
http://drupal.org/project/performance
http://drupal.org/project/schema
http://drupal.org/project/sitedoc
http://drupal.org/project/coder
http://drupal.org/project/devel
http://drupal.org/project/devel_themer
http://drupal.org/project/performance
http://drupal.org/project/schema
http://drupal.org/project/sitedoc

4 |

Drupal Theme Development

An excellent example of good theming practice can be found in this article: Theming Best Practices, Garland

get a clean-up7 - in the case of WFP development, the template.php should be used as little as possible and

instead a custom theme support module should be used for logic.

Anatomy of a .tpl.php file
For an example of best templating practice, see the World Food Programme document entitled Drupal

Template Case Study. If you were not supplied this document, please request it.

*.tpl.php must be used just for what templates are made for: markup

Template files should be small, clean and only contain the following:

 Verbose comments

 XHTML

 Short, basic PHP functions, such as:
o print
o foreach
o if-else

Avoid function calls directly in a *.tpl.php file. The *.tpl.php files should be used explicitly for markup, and

just printing out variables when necessary. Function calls must be made in modules and the results passed

through to the template.

Logic should never appear in a .tpl.php, it should be in a custom theme support module instead. In other

words, creating arrays, imploding and function calls should never appear in a .tpl.php. Unlike the MVC

(Model-View-Controller) architectural pattern which does not forbid direct access to the Model from the

Views, the PAC (Presentation-Abstraction-Control) architectural pattern (which Drupal is based on) explicitly

forbids doing this: the Control layer (i.e. controller) must guarantee that all the necessary variables which

generation require communication with the Abstraction layer (i.e. model) will be prepared and passed to the

Presentation (i.e. view) layer.

Verbose comments should be added to the beginning of each template file, such as is found in all of the

Drupal code template files. In fact, the Drupal core template file comments can be used as a starting point

for customized template files.

Example of node.tpl.php from Drupal core
<?php

/**
 * @file node.tpl.php
 *
 * Theme implementation to display a node.
 *
 * Available variables:
 * - $title: the (sanitized) title of the node.
 * - $content: Node body or teaser depending on $teaser flag.
 * - $picture: The authors picture of the node output from
 * theme_user_picture().
 * - $date: Formatted creation date (use $created to reformat with
 * format_date()).
 * - $links: Themed links like "Read more", "Add new comment", etc. output
 * from theme_links().
 * - $name: Themed username of node author output from theme_username().
 * - $node_url: Direct url of the current node.
 * - $terms: the themed list of taxonomy term links output from theme_links().
 * - $submitted: themed submission information output from

7 http://www.lullabot.com/articles/theming-best-practices-garland-gets-a-cleanup

http://www.lullabot.com/articles/theming-best-practices-garland-gets-a-cleanup
http://www.lullabot.com/articles/theming-best-practices-garland-gets-a-cleanup
http://www.lullabot.com/articles/theming-best-practices-garland-gets-a-cleanup

5 |

 * theme_node_submitted().
 *
 * Other variables:
 * - $node: Full node object. Contains data that may not be safe.
 * - $type: Node type, i.e. story, page, blog, etc.
 * - $comment_count: Number of comments attached to the node.
 * - $uid: User ID of the node author.
 * - $created: Time the node was published formatted in Unix timestamp.
 * - $zebra: Outputs either "even" or "odd". Useful for zebra striping in
 * teaser listings.
 * - $id: Position of the node. Increments each time it's output.
 *
 * Node status variables:
 * - $teaser: Flag for the teaser state.
 * - $page: Flag for the full page state.
 * - $promote: Flag for front page promotion state.
 * - $sticky: Flags for sticky post setting.
 * - $status: Flag for published status.
 * - $comment: State of comment settings for the node.
 * - $readmore: Flags true if the teaser content of the node cannot hold the
 * main body content.
 * - $is_front: Flags true when presented in the front page.
 * - $logged_in: Flags true when the current user is a logged-in member.
 * - $is_admin: Flags true when the current user is an administrator.
 *
 * @see template_preprocess()
 * @see template_preprocess_node()
 */
?>
<div id="node-<?php print $node->nid; ?>" class="node<?php if ($sticky) { print ' sticky'; } ?><?php if (!$status) { print ' node-unpublished'; }
?> clear-block">

<?php print $picture ?>

<?php if (!$page): ?>
 <h2><a href="<?php print $node_url ?>" title="<?php print $title ?>"><?php print $title ?></h2>
<?php endif; ?>

 <div class="meta">
 <?php if ($submitted): ?>
 <?php print $submitted ?>
 <?php endif; ?>

 <?php if ($terms): ?>
 <div class="terms terms-inline"><?php print $terms ?></div>
 <?php endif;?>
 </div>

 <div class="content">
 <?php print $content ?>
 </div>

 <?php print $links; ?>
</div>

Notice the verbose comments and only print and the use of simple code logic.

Theme preprocessor functions
Preprocessor functions should be used extensively when variables need to be passed to .tpl.php files. This

way, business logic can be performed inside of modules, with only the resulting variable(s) being passed

through to the .tpl.php files, avoiding logic in the template files.

Overridding templates
When template files are being overridden in the theme, they should be put into a directory called

“templates”, at the root of the custom theme directory.

The directory should be structured as follows:

/themes/wfp/templates/
 /block/
 /node/
 /page/
 /views/
 /other/

6 |

Drupal Module Development

Template files
Template files (.tpl.php) related to the custom module should be in the root directory of the module. They

can then be added to the Drupal templating system using hook_theme()8 and also be passed custom theme

variables.

CHANGELOG
Each custom module must contain the file CHANGELOG.txt which contains a list of all the changes between

module release versions. Each modification to any file inside of the module should have a summary of the

modification added to the CHANGELOG.txt file.

When not to use PHP
PHP code should only ever appear in files and never in the database.

So, PHP code should never be used in textfields inside Views, Panels, Webform, nodes, blocks etc. even if the

PHPFilter module is enabled.

If beginning a new Drupal project, never activate the core PHP Filter module or any other module that allows

PHP to be evaluated from textfields.

Here is a list of strong reasons not to use PHP in text fields: Downside of using PHP code in textfields9

Module Dependencies (.info)
The module.info file should be updated to reflect the version changes (eg. 6.x-1.1) and dependencies as

changes to the module are made.

Any calls to modules functions require that the module be added as a dependency to the .info file. It should

not be assumed that optional core modules are installed (e.g. taxonomy, path, etc.)

The Features module, by default, suggests the dependent modules, each of these suggestions should be

verified if it is an actual dependency or not.

Theme hook functions
Already existing theme hook functions should be used whenever possible, rather than creating HTML

elements inside modules. For example, use:

For image elements (), use: (always include the alt and title parameters)

theme(‘image’, ‘files/image.png’, ‘An Image’, ‘Description of an image’);

For anchor elements (<a>), use: (always include the title option, and an appropriately named class and id

when necessary)

l(t(‘Label’), 'node/123', array('attributes' => array('class' => 'link', 'id' => 'label', 'title' => 'Title')));

Translatable text
Human-readable text that will be displayed somewhere within a page must be run through the t()10 function.

The developers must use the placeholder parameters11 of the t() function whenever using a dynamic string.

8 http://api.drupal.org/api/function/hook_theme
9 http://drupal.stackexchange.com/questions/2509/what-are-the-downsides-of-using-custom-php-code-in-blocks-nodes-views-args#answers-header
10 http://api.drupal.org/api/drupal/includes%21common.inc/function/t/6

http://api.drupal.org/api/function/hook_theme
http://drupal.stackexchange.com/questions/2509/what-are-the-downsides-of-using-custom-php-code-in-blocks-nodes-views-args#answers-header
http://api.drupal.org/api/drupal/includes%21common.inc/function/t/6
http://drupal.org/node/322732
http://api.drupal.org/api/function/hook_theme
http://drupal.stackexchange.com/questions/2509/what-are-the-downsides-of-using-custom-php-code-in-blocks-nodes-views-args#answers-header
http://api.drupal.org/api/drupal/includes%21common.inc/function/t/6

7 |

Comments and formatting
The developers should be well aware of and develop inline with the Drupal best practices12 guideline and

importantly, the Drupal coding standards13. These guidelines should be followed strictly.

Files directory
The files directory should contain sub-directories which allow for files to be logically divided.

For example:
/files/images/

/files/pdf/

/files/fr/images/ (for i18n installations)

On sites where users will be allowed to upload files and it is foreseen that the number of files on the server

will increase over time, the module FileField Paths14 should be used and an appropriately named directory in

the files directory should be used.

Coding Standards and Validation

Drupal Standards
The Coder module15 should be used as a guideline to gauge if the custom code has been developed using the

Drupal coding standards.

When submitting development for approval, a document should be provided with the results of running a

code review using the following parameters (only applied to the modules / themes that were worked on

during the development):

 Drupal Coding Standards

 Drupal Commenting Standards

 Drupal SQL Standards

 Drupal Security Checks

 Internationalization

 Include files (inc | php | install | test)

 “Normal” severity level.

A WFP technical staff member will also perform a code review to verify if the Best Practices outlined in this

document have been followed.

Naming Conventions
PHP variable names should be descriptive and easily readable to determine what kind of data it contains.

CSS selector names (both ID’s and classes) should use semantic names to identify them. The supplier should

contact WFP regarding the specific naming convention.

11 http://drupal.org/node/322732
12 http://drupal.org/best-practices
13 http://drupal.org/coding-standards
14 http://drupal.org/project/filefield_paths
15 http://drupal.org/project/coder

http://drupal.org/best-practices
http://drupal.org/coding-standards
http://drupal.org/project/filefield_paths
http://drupal.org/project/coder
http://drupal.org/node/322732
http://drupal.org/best-practices
http://drupal.org/coding-standards
http://drupal.org/project/filefield_paths
http://drupal.org/project/coder

8 |

CSS and JavaScript
CSS and JS files should always be added using the Drupal functions drupal_add_js() and drupal_add_css()

respectively which allows them to be aggregated and optimized. They should never be added directly inside

template files.

Inline CSS and JS should never be used when it can be put into an external file.

JavaScript and CSS should also conform to standard practices regarding formatting, layout and logic.

As we aggregate both JavaScript and CSS, logical separation can be made by creating separate files when

necessary. Adding all CSS to style.css in the theme directory eventually becomes unmanageable so logical

separation is encouraged.

CSS selectors (id’s and classes) should be used frequently and appropriately.

Optimisation
Optimisation must be considered even from the design stages of development and not seen as an

afterthought, once development has been completed. Some grave examples have been discovered which

would mean having to completely redesign whole sections of the platform in order to get it to work with

caching.

Caching
All custom code must function when all forms of caching is active, including: Page caching (including

Pressflow’s cache lifetime options), Block caching, URL Path Caching (Pressflow), Views caching, Panels

caching, etc. All code must also work with MemCache as well as with Varnish and other reverse proxies.

All code must also work with JS and CSS optimization activated.

Views
When necessary, a View should be created and organized to contain appropriate, logical groups of displays

(for example, by section or by functionality).

Session data
Anonymous PHP sessions must not be used (ie. using the $_SESSION[] associative array global variable), unless

approved by WFP.

Contributed Modules (drupal.org)
The golden rule to using contributed modules is to keep it simple and only install the essential modules

required to achieve the functionality requested.

Contributed modules should be analysed thoroughly to assess if they are essential (e.g. a module where only

10% functionality is used, is not essential. Instead, write a new module to address the specific needs, taking

into consideration performance and scalability issues. Contributed modules which leverage node

functionality potentially can create an unacceptable database overhead when a system needs to handle a lot

of users.) Developers must be highly aware of the performance / security / migration pitfalls of using too

many contributed modules (see: The Drupal contributed modules "open buffet binge" syndrome16.)

16 http://2bits.com/articles/server-indigestion-the-drupal-contributed-modules-open-buffet-binge-syndrome.html

http://2bits.com/articles/server-indigestion-the-drupal-contributed-modules-open-buffet-binge-syndrome.html
http://2bits.com/articles/server-indigestion-the-drupal-contributed-modules-open-buffet-binge-syndrome.html

9 |

Additional contributed modules from drupal.org can only be installed once approved by WFP. The vendor

must be able to justify the installation of the additional module. Approval is also required for contributed

modules which are already available on the repository but are not active.

Release Candidate and stable versions of modules are permitted to be installed, unless there is a known

vulnerability or major issue with the module. Development, alpha and beta versions of modules are not

permitted to be installed.

Quality Assurance and Testing
The vendor has to carry out full Quality Assurance (QA) rounds to ensure the deliverables are as requested

and that they are completely bug and error free.

WFP will carry out Acceptance Testing (AT) of the deliverables to ensure that they meet the functionality

requirements. Invoices will not be paid until all WFP Acceptance Tests have been passed.

The vendor must provide a 12-month bug warranty, fixing identified bugs within a reasonable time period,

free of charge.

Deployment
The supplier must package the changes into an existing Feature when possible and if not, into a new

Feature17.

A feature is a collection of Drupal entities which taken together satisfy a certain use-case. Importantly, the

supplier should add custom code (e.g. custom hook implementations, other functionality, etc.) to your

feature in myfeature.module as you would with any other module. All Features must contain the correct

dependencies (in the .info file) and be 100% self-contained.

All deployment packages (whether Features or not) must have an INSTALL.txt document which clearly

outlining the step-by-step installation procedure for the new functionality.

Deployment Dry-run
The supplier must perform a dry-run of the integration of the new code / Feature using an exact copy of the

production site. Once the supplier is completely satisfied with the deployment and can verify that the

supplied INSTALL.txt document is correct, the package should only then be sent to WFP for deployment.

Training

Technical installation and setup
Sufficient time must be made available to work alongside WFP to successfully complete the deployment on a

staging server as well as on the production server.

Backend training
If the development modifies or adds functionality to the backend interface (additional features, menu

options, etc.) then a clear, well written user manual must be provided or the current user manual updated to

represent the changes.

17 http://drupal.org/project/features

http://drupal.org/project/features
http://drupal.org/project/features

