
Free (Libre) and Open Source Software:
A Social Justice Primer for Churches

 You will be made rich in every way so that you
can be generous on every occasion, and through
us your generosity will result in thanksgiving to
God. 2 Corinthians 9:12 New International Version (NIV)

F(L)OSS? Open Source? Free Software?
Help – I’m confused!

When we use the term “Free” in conjunction with
software, it has the meaning understood in
French as “libre” – referring to liberty rather than
price. To make this clear, the letter “L” often
appears in the acronym. Because access to the
“source code” (instructions to computers that are
readable by humans) is considered essential to
ensure the liberty of software, some people prefer
the term “Open Source Software”, or OSS. We
will use the combined acronym “F(L)OSS”
throughout.

Free software is a matter of the users' freedom to
run, copy, distribute, study, change and improve
the software. More precisely, it refers to four
kinds of freedom, for the users of the software:

 The freedom to run the program, for any
purpose (freedom 0).
 The freedom to study how the program works,

and adapt it to your needs (freedom 1). Access
to the source code is a precondition for this.
 The freedom to redistribute copies so you can

help your neighbor (freedom 2).
 The freedom to improve the program, and

release your improvements to the public, so
that the whole community benefits (freedom 3).

(Free Software Foundation, 2005)

Unfortunately there is another similar term,
“Freeware”, which refers to software that is made
available at no monetary cost to the user, but
under restrictive licensing terms which disqualify
it from the definition of “Free Software”. Good
examples of Freeware are the Internet Explorer
web browser from Microsoft, and the Acrobat
Reader program from Adobe Systems. These
programs cost nothing to download, but are not
“Free Software” or F(L)OSS.

We do not need to artificially restrict the infinite
supply of digital goods, in order to ensure the
creators and providers of those goods are
properly rewarded (potlatch.net, 2001)

What is F(L)OSS? Why should we care?
Faith-based organizations around the world
have been leaders in drawing attention to a
variety of social justice issues, from
globalization of trade, to ecological devastation
and self-determination rights of indigenous
populations. However there is one key social
justice concern that has escaped the notice of
virtually all religious organizations: Free (Libre)
and Open Source Software or F(L)OSS. This
failure is becoming more and more important, as
religious organizations seek to extend their
reach on the Internet to a younger, more
technically aware generation. This generation
has a finely tuned sense of irony, and can sniff
out apparent hypocrisy from a mile away.
Although churches have already discovered the
preference of individuals aged 30-45 for
electronically mediated two-way
communication, they have so far largely failed
to understand how their institutional choices of
proprietary technology present an apparent
contradiction in the eyes of their high-priority
youth target audience. This failure opens
religious organizations to criticism, or worse, to
indifference.

In this background paper, we will examine some
of the tensions underlying the notion of
F(L)OSS, enabling individuals and religious
organizations concerned with social justice to
determine their responses. We will highlight
some of the parallels between F(L)OSS
communities and religious organizations, in
particular, their organization, as gift economies.

F(L)OSS Backgrounder for Churches Andrew Clarke 1

A Historical Perspective:
The Rise of Software-as-Product

Today we take for granted that everyone
understands the term “software” as “the entire
set of programs, procedures, and related
documentation associated with a system and
especially a computer system” (Merriam-
Webster Online Dictionary, n.d.). But the idea
that such programs and procedures could have
value outside their original social contexts is a
relatively recent one. For many years,
computers were exceedingly expensive, and
therefore purchased only by large institutions
who hired programmers to write programs that
made them useful in a particular social context
(Raymond, 1999). Although the term
“software” was not widely used in the 1960s
and 70s, it would have been understood then as
referring to a service provided by computer
programmers.

An early mainframe computer
Source: US Geological Survey, 1964.

However, with the advent of the personal
computer in the late 1970s and early 1980s, this
changed completely. Once stand-alone
computers were available cheaply to a mass
market, it became clear that supplying programs
for these computers represented a substantial
opportunity for the concentration of wealth.
The way to make money from software
development was to identify a simple need
shared by a large number of users and write a
computer program to meet this need. Because
at the time few computers were connected to
any form of network, the most efficient way to
distribute such programs was to embed them in

portable media such as floppy diskettes, place them
in a shrink-wrapped box with a printed user manual,
and ship them to stores where people could buy
them. This distribution method reinforced the
notion, now widespread, of software-as-product.

As soon as the competitive market of software-as-
product became established, suppliers identified that
minimizing interoperability with competitors’
programs was a key strategy for achieving market
dominance. In a market where all suppliers are
pursuing this strategy, the risk is high that the market
will fail into a monopoly: a “winner take all”
scenario. Such a market failure brings to society not
only costs but also at least one significant benefit:
the creation of de facto standards through the
effective dominance of one supplier’s products or
services. The costs to society include, of course, the
excessive concentration of wealth and power in the
hands of the monopolist organization and its
shareholders. This theoretical failure of the global
software market is exactly what actually occurred
during the 1990s. The complete dominance of
Microsoft Corporation led both to the creation of
standards that were otherwise lacking, and to the
extreme concentration of wealth and power in the
hands of an unelected few.

Elected officials in numerous jurisdictions around
the globe responded to this situation through a
variety of political and legal means, with not much
success. Microsoft to this day remains so wealthy
that it can essentially afford to give away at no cost
almost any software that a competitor might create.
This anti-competitive practice was the subject of a
lawsuit by a consortium of US states filed in 1998.
Microsoft eventually consented to a judgement in
2002 which acknowledged its unlawful behavior in
exchange for minimal penalties that were largely
irrelevant by the time they were imposed (State of
New York et. al. v. Microsoft Corporation, 2002).

The emergence of the market for software-as-
product and its subsequent failure into monopoly
were contingent on two factors: 1) the ability of
software producers to exclude competitors from the
source code of their applications; and 2) the
protection of the legal schemes of copyright and
patent that are imposed politically on the software

F(L)OSS Backgrounder for Churches Andrew Clarke 2

2002 Software Spending in USA
Total: $232 Billion

Software as product
33%

Software as labour
67% Source: U.S. Department of Commerce, Bureau of Economic Analysis, 2002

market. Both of these factors need to be
further explained in order to understand the
problem that F(L)OSS solves.

Every piece of software is written by
developers in a human-readable computer
language, which makes up the source code.
This code is then converted into machine
language, which is what you purchase on a
disc in a box from a store. The source code is
never included when you purchase software-
as-product. (In fact, if you take the time to
read the tedious legal language of the end-user
license agreement or “EULA”, you’ll probably
find that in many cases, you are not really
acquiring much at all in the way of property
when you pay your money to the merchant and
carry home your shrink-wrapped box). Since
the very act of using software creates in the
user the need to change it (Peizer, 2003), this
presents a bit of a problem. Of course the
market for software-as-product might offer
you a solution if your needs are typical
enough. Likely there’s some add-on, or
companion product that modifies your original
purchase in some small way (but which cannot

What is Source Code?

A computer is a machine which essentially consists of a
lot of on/off switches. In order to make these switches do
something useful, we have to plan out which switches to
turn on in what order. This is where the ones and zeros
(bits) come in. We call these "machine code" because
they tell the machine which switches to turn on or off. In
very early and simple computers, the programmers would
actually write their machine code by hand on paper and
then toggle it into the switches on the front. As software
got more complicated, this machine code got longer and
longer. Today's software is constructed of billions of bits!
To make really complicated software, it is much more
effective to write what we want to do in a high-level
language (one that looks something like English) and then
have a program (a compiler) translate this into machine
code.

Source Code Machine Code (bits)

#include <stdio.h>
main () {
 printf("hello
world\n");
}

11111110010100010000
01000110001001000001
00000000100000000000
00000000000000000000
01000000000000000011(th
is goes on for
thousands of lines)

Copyright © 2005 Eric L. Wilhelm.
http://scratchcomputing.com/articles/whatis_source.html
Used with permission.

F(L)OSS Backgrounder for Churches Andrew Clarke 3

itself be lawfully modified by you in any way)
that makes it more useful to you.

This very tension is what drove the foundation
of the F(L)OSS movement. In the early 1980s,
a computer scientist named Richard Stallman
was working in the Artificial Intelligence Lab at
MIT. Stallman had been having problems with
a printer, and wanted to modify the source code
of the printer control program to make it work
properly. But the individual who wrote the
program “refused to give [Stallman] and the
MIT AI Lab the source code for the control
program for [the] printer” (Stallman, 1999)
because he had signed a nondisclosure
agreement a with a producer of proprietary
software and hardware.

Reacting to this experience, Stallman issued a
manifesto. In it, he defined four important
freedoms that would define free software: 1)
users have the ability to use the software for any
purpose, 2) the software is open to being
improved to meet the needs of the user, 3) users
are able to distribute the software to anyone who
finds it useful, and 4) those who make changes
and/or improvements on the software are able to
distribute the changes/improvements they made.
It is important to realize that here ‘free’ does not
refer to the idea of ‘no cost’, but rather to the
notion of liberty. Users may have to pay a price
for the software, but they are free to do what
they please with that piece of software. Because
the word ‘free’ in English language is
ambiguous, we often use the French word ‘libre’
to define free software, hence the term
‘F(L)OSS’: Free (Libre) and Open Source
Software.

But it is not only by withholding the source
code for their programs that the makers of
software-as-product were able to exclude
purchasers from acquiring the rights that
Stallman envisioned. Software is itself a type of
information, and therefore meets economists’
definition of a “public good”. This means two
things: 1) my use of a piece of software does
not lessen your ability to use it simultaneously;
and 2) with the exception of source code, it is

almost impossible for me to keep you from copying
it (Hawkins, 2004). Economic theory would predict
that because software is a public good, markets will
fail to encourage the production of enough of it
without some form of political intervention. The
result would be unmet demand for software. As a
result, Western society has devised various
intellectual property protection schemes to
encourage innovation and discourage undersupply
(Stiglitz,1999). However, it’s important to realize
that these intellectual property laws and treaties were
implemented many years ago, in a time of
information scarcity. In the context in which they
were devised, they balanced the need to give creators
adequate incentive to create new information against
the public’s need for unrestricted access. Many
authors have recently commented on how current
intellectual property laws and treaties no longer
balance these needs effectively, because we have
entered an era where information is globally
overabundant (e.g. Lessig, 2000). However, in the
early 1980s, in none of this more recent legal and
economic scholarship existed.

What Richard Stallman devised was a way to use the
existing intellectual property law of the day to
ensure and promote software freedom, rather than to
restrain it. He did this through the creation of a legal
document called the General Public License (GPL).
This document, when used by the creator of a piece

Richard
Stallman,

1983
from:

www.stallman.org

F(L)OSS Backgrounder for Churches Andrew Clarke 4

of software, allows that person to retain
copyright control of his or her work, and yet
make that work available to others in a way that
embodies Stallman’s four freedoms. The GPL
itself contains within it provisions which allow
it to be distributed under the terms it describes,
but which allow its control to be retained by the
Free Software Foundation, an organization
established by Stallman expressly for this
purpose.

Subsequently, others have found the terms of
the GPL too restrictive for their own purposes,
and have created similar licenses that reserve
different sets of rights to their originators.
Among the important variants is the Berkeley
System Distribution (BSD) license. Although
the GPL does allow derivative works to be
distributed commercially (i.e. sold), it states that
they must also be made available free of charge.
Furthermore it restricts incorporation of any part
of GPL-licensed work into a product that does is
not also distributed under the GPL. The BSD
license does not contain these restrictions
(Krishnamurthy, 2003). An example of the
importance of this distinction is the Apple OS-X
operating system. In creating OS-X, Apple used
substantial portions of FreeBSD, a F(L)OSS
operating system, but neither made OS-X
available for free, nor released the source code
for it. Apple would not have been able to carry
out this action if it had based OS-X on Linux, a
different F/LOSS operating system that is
licensed under the GPL.

Stallman not only released the GPL, but wrote a
substantial number of important computer
programs and released them under the GPL.
However, his work didn’t get much attention
until a couple of other important things
happened. The first of these was the advent of
the Linux operating system.

In 1991, Linus Torvalds was studying computer
science as an undergraduate in Finland.
Because of his academic affiliation, he had
relatively easy access to Stallman’s Free
Software, which was written entirely to run on
the large, shared computers found at universities

and other institutions. Torvalds thought that it
would be “cool” to try to adapt Stallman’s programs
to run on the cheap, personal computer hardware of
the day. To do this, he needed to create the “kernel”
of a new operating system for personal computers:
the most essential, lowest level program that
communicates with disks, video displays, keyboards,
etc. Unlike Stallman, who is described as both a
loner and a genius, Torvalds preferred to work in
groups. Using the Internet (but not the worldwide
web, which wasn’t invented yet) he invited academic
computer scientists around the world to join him in
creating this new operating system, which he called
Linux. This self-organizing network of volunteers
soon started to break new ground not only in the
field of computer science, but also in the way that
they worked collaboratively together on a project
from which none of them would derive significant,
direct monetary benefit. This phenomenon of
massive, distributed, self-organizing volunteer
labour continues to accelerate to this day (Raymond,
1999). The exact nature of the motivation for
participation in such projects is the subject of much
recent academic work. (Haruvy, Prasad and Sethi,
2005; Benkler, 2001). Nevertheless, the end result is
widely accepted as being a “gift economy” – where
goods and services are exchanged without direct
quid pro quo, and where a participant’s power and
status are derived not from what s/he has
accumulated by taking from others, but from what
s/he has contributed by giving to others (Pinchot,
1995).

Although the F(L)OSS gift economy has existed
since the advent of computing in the mid-twentieth
century, it is only recently that advances in computer
hardware and networking technology have made it
feasible for virtually every person on earth to
participate in it. Yet we stand at a point in history
where every individual and every organization in all
developed nations (and most developing nations) are
faced with important choices about their level of
participation in the F(L)OSS community. In the
next section, we will examine the ramifications of
these choices.

F(L)OSS Backgrounder for Churches Andrew Clarke 5

Implications for Churches

Scarcity or Abundance?
Few would debate that we live in an age of
information abundance. Some would even argue
that, at least globally, the abundance we
experience extends beyond the realm of
information. The problem most of us perceive
is not how to get access to sufficient amounts of
information, but rather how to sort through the
mountains of information directed at us and
determine which, if any, is useful to us in our
personal and social contexts. On the other hand,
the system of intellectual property law under
which we currently operate embodies the
assumptions of information scarcity that were
generally true in the late eighteenth century.
The F(L)OSS phenomenon has demonstrated
that at least in some cases, political intervention
in the market for information is not required to
ensure adequate production of information.
Instead, such protection leads to both market
distortion (excessive wealth accumulation) and
eventual market failure (monopoly). In the
past, churches have typically been quite fearful
of breaking the law, and so have adhered quite
strictly to existing copyright law. In addition,
many church musicians and composers feel a
sense of comfort with the status quo, and
hesitate to upset the cart on which they’ve been
riding, even if it is small and slow-moving.
However, the time may soon be at hand for
churches to consider whether support of the
existing copyright regime is consistent with
their notions of social justice.

Failed Market or Gift Economy?
In deciding not to challenge existing intellectual
property law, churches are not only preserving a
political scheme for ensuring adequacy of
innovation that may no longer be necessary.
They are also rejecting an important alternative
that has substantial consistency with the
theological and social principles on which
churches operate: the notion of gift economy.

It’s fairly easy to see how individual Christian
congregations operate as gift economies, since
the ideas of tithes and offerings are central to

their fiscal foundations. At least within the Christian
context, however, it is possible to find homology
with gift economies at an even deeper level. It does
not seem like too much of a stretch to say that the
very foundations of Christianity can be thought of as
the transition from a quid pro quo system for
exchanging love (or spiritual favour) whose
transactional rules were enforced contractually
through the ten commandments, to one of
unrestricted abundance of love and grace through the
ultimate sacrifice of Jesus Christ. This argument
seems worthy of careful consideration and reflection
on the part of individual Christians and Christian
churches. Canadian churches should find this
argument particularly poignant, since the indigenous
peoples of Canada are often cited as having well
documented gift economies prior to their being
assimilated into the global capitalist market.

Consumers or Citizens?
The advent of the Internet was supposed to reduce
some of the power asymmetries inherent in the
control and ownership of media by making it
economically feasible for every citizen to be a
content creator and publisher (Schement and Curtis,
1995). This promise, however, has largely not been
realized. In fact, in his article, The Real Digital
Divide: Citizens versus Consumers (2002), Oscar
Gandy looks at how new forms of media have
actually widened the gap between citizens and
consumers. The content of the Internet is still
produced mostly by professionals, and consumed
passively by individuals supported by advertising.
Now, however, the clicking habits of users on
Internet sites is simply added to the large body of
other data (such as credit card purchases) that
enables the classification of individuals into groups
which serve the needs of a capitalist market. This
opportunity has not been lost on the few remaining
software monopolists in each sector. Foreseeing the
demise of software-as-product, both Apple and
Microsoft have aggressively allied themselves with
media concerns (Apple with Disney/ABC, and
Microsoft with NBC). The net result is that the
view of individuals-as-citizens on the Internet is
discounted, while the view of individuals-as-
consumers is validated and supported. The point of
all this is that when churches continue to support
monopoly-seeking makers of proprietary software,

F(L)OSS Backgrounder for Churches Andrew Clarke 6

they also appear to validate the notion of
individuals-as-consumers, which they generally
otherwise seek to diminish.

This apparently contradictory behavior is not
lost on many young, computer-literate would-be
church-goers. Because of their overall low level
of technical sophistication, Church
organizations probably aren’t aware that their
web visitors can easily identify the technology
that an organization is using to serve its web
pages. If a church, which is trying to encourage
young people to participate in a gift economy,
uses proprietary (e.g. Microsoft) technology to
serve web pages, or to facilitate on-line
communities, many socially and technically
conscious young people simply cannot disregard
it. Although there is no literature to suggest
this, it seems like a plausible reason why
churches might have trouble attracting young
and tech-savvy new members. If this is true, it
represents an important lost opportunity for
churches. Potential members who might be
repelled by seeing proprietary technology on a
church website are disproportionately valuable
as potential church members, since they’re often
already well-versed in how to administer an
effective gift economy, having probably
participated in several already.

Self-determination or Dependence?
Because of the near-zero acquisition cost of
F(L)OSS, many organizations that apply
information and communication technologies in
the developing countries of the world use
F(L)OSS extensively. Using F(L)OSS reduces
the costs to these organizations substantially,
and allows workers in developing countries to
acquire computer skills while adapting software
to their own unique social contexts. In addition,
“many developing countries are reluctant to
uphold intellectual property laws or agreements
that make access to information more costly,
impede technology transfer and increase the
monopoly power of multinational corporations”
(Stein & Sinha, 2002, p. 412). The fact that
makers of proprietary software and their
billionaire founders are often quite generous in
donating resources to the poor in no way

reduces the inequity of the wealth accumulation in
the first place. Furthermore, the fundamental issue
of self-determination remains. Why should poor
people pay money to Microsoft for software which
they largely don’t need, so that they can receive
some of their own wealth back with strings attached?

Summary & Conclusions
In conclusion, one can see that F(L)OSS essentially
embodies the notion of software-as-service, and
creates a tension with the more common, but
relatively recent, view of software-as-product.
Software-as-product implies a conceptualization of
information as being disconnected from social
context, and requires political intervention to
maintain adequate levels of innovation. When
supported in this way, however, software-as-product
has a natural tendency to lead to market failure by
monopoly. On the other hand F(L)OSS, or software-
as-service, relies on the notion that like all
information, software requires extensive social
contextualization to be maximally useful. Although
innovation in a F(L)OSS market might proceed more
slowly at first than in a market supported politically
through restrictive intellectual property rights, the
decentralized production and consumption of
F(L)OSS eventually leads to a gift economy where
software is priced at its true marginal cost: an ideal
market (Klemens, 2006, p. 97). Stakeholders win or
lose in the tension created by F(L)OSS according to
their degree of alignment with the centralized,
monopoly-seeking world of software-as-product, or
the decentralized gift economy of software-as-
service.

The implications for churches are many, and
important to consider. Churches face important
choices today about whether they will continue to
lag behind other organizations who have recognized
the importance of F(L)OSS and begun to support it
actively.

Bibliography

Benkler, Y. (2001). The battle over the institutional ecosystem
in the digital environment. Communications of the
ACM, 44(2): 84-90.

F(L)OSS Backgrounder for Churches Andrew Clarke 7

Raymond, E. S. (1999). The cathedral & the bazaar: Musings
on linux and open source by an accidental
revolutionary. Sebastopol, CA: O'Reilly.

DeLong, J.B. and Froomkin, A.M. (2000). Speculative
Microeconomics for Tomorrow’s Economy.
First Monday, 5(2), [online]. Retrieved August
23, 2006 from
http://firstmonday.org/issues/issue5_2/delong/index.html Schement, J. R. and Curtis, T. (1995). Chapter 1 – The New

Industrial Society. In Tendencies and Tensions of the
Information Age: The Production and Distribution of
Information in the United States, (pp. 21-45). New
Brunswick, NJ: Transaction Publishers.

Free Software Foundation. (2005). The free software
definition. Retrieved November 23, 2006 from
http://www.fsf.org/licensing/essays/free-sw.html.

Gandy Jr, O. (2002). The Real Digital Divide: Citizens
versus Consumers. Handbook of New Media.
(pp.448-460). London, UK: Sage.

Stallman, R. (1999). The GNU operating system and the free
software movement. In C. DiBona, S. Ockman, & M.
Stone (Eds.), Open sources: Voices from the open
source revolution (pp. 53-70). Sebastopol, CA:
O’Reilly & Associates. Goth G (2005). Open Source Business Models: Ready for

Prime Time. IEEE Software. 22(6), 98-100.
State of New York, et al. v. Microsoft Corporation, No. 98-

1233. United States District Court for the District of
Columbia. November 1, 2002.

Haruvy E, Prasad A, Sethi SP. (2003). Harvesting
Altruism in Open-Source Software
Development. Journal of Optimization Theory
and Applications. 118(2), 381-416. Stein, L. & Sinha, N. (2002). New global media and

communication policy: The role of the state in the
twenty-first century. In Lievrouw, L. & Livingstone,
S. (eds.), Handbook of new media, (pp. 410-431).
London, UK: Sage.

Hawkins, R. E. (2004). The economics of open source
software for a competitive firm. NETNOMICS:
Economic Research and Electronic Networking,
6(2), 103-117.

Stiglitz, J. (1999). Knowledge as a global public good. In I.
Kaul, I. Grunber, & M. A. Stern (Eds.), Global Public
Goods: International Cooperation in the 21st Century
(pp. 308-325). New York and Oxford: OUP.

Klemens, B. (2006). Math you can't use: Patents,
copyright, and software. Washington, D.C.:
Brookings Institution Press.

Krishnamurthy, S. (2003). A managerial overview of
open source software. Business Horizons, 46(5),
47-56.

Stone, A. (2002). Why businesses use OSS. IEEE Software.
19(2), 102.

US Geological Survey. (1964). Retrieved December 11, 2006,
from
http://libraryphoto.cr.usgs.gov/htmllib/btch545/btch54
5j/btch545z/pap0018b.jpg

Lerner, J. & Tirole, J. (2002). Some Simple Economics of
Open Source. The Journal of Industrial
Economics, 50(2), 197-234.

Lessig, L. (2000). Open code and open societies. In J.
Feller, B. Fitzgerald, S. A. Hissam, & K. R.
Lakhani (Eds.), Perspectives on free and open
source software (pp. 249-360). Cambridge, MA:
MIT Press.

Wilhelm, E. L. (2005). What is source code?. Retrieved
November 26, 2006 from
http://scratchcomputing.com/articles/whatis_source.ht
ml.

 Merriam-Webster Online Dictionary (n.d.). Retrieved
November 25, 2006, from
http://www.webster.com/dictionary/software.

Peizer, J. (2003). Realizing the Promise of Open Source

in the Non-Profit Sector. Retrieved December 3,
2006, from
www.soros.org/initiatives/information/articles_publications/a
rticles/realizing_20030903

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 2.5 Canada

License.

To read the full text of the license, please visit
http://creativecommons.org/licenses/by-nc-sa/2.5/ca/

Pinchot, G. (1995). The Gift Economy. Retrieved
November 26, 2006 from
http://www.context.org/ICLIB/IC41/PinchotG.ht
m.

F(L)OSS Backgrounder for Churches Andrew Clarke 8

http://creativecommons.org/licenses/by-nc-sa/2.5/ca/�
http://creativecommons.org/licenses/by-nc-sa/2.5/ca/�

	What is F(L)OSS? Why should we care?
	Implications for Churches
	Bibliography

