
Theming from the Ground Up

Megan McDermott
InterMedia
May 17, 2012

About Me

● Megan McDermott
(aka “drupalchick”)

● Web designer/developer since
1997

● Working with Drupal since 2007
, full-time since May, 2011

● Portfolio:
http://meganmcdermott.com

● Drupal.org:
http://drupal.org/user/258172

http://portfolio.meganmcdermott.com/
http://drupal.org/user/258172

Theming from the Ground Up

● Building a theme from the
bottom-up

● Often people get started by
customizing exiting themes

● These are complex

What is a theme?

● Defines the structure (HTML) and appearance (CSS) of
your Drupal site

● Similar to a template, but broader

● Encompasses anything the user sees on the page

● Facilitates:
● Placement of content and user-interface bits
● Design implementation (CSS)
● Interactivity (JavaScript)

Types of Themes

Base theme
Generic theme designed to
be used as a starting point
for a custom theme (e.g.
Zen)

Custom theme
Designed for a specific site
with a specific design (may
or may not use a base
theme)

Generic theme
Designed to be used for
many sites, with many
configurations (e.g. Bartik)

What's new in Drupal 7

● Separate html.tpl.php and page.tpl.php

● Content region required (content placed as a block)

● Render Arrays – ability to hide/show fields in a node
template

● Regions also output using render()

● hook_form_alter in theme layer

● Little things
● Primary and Secondary links are now Main and Secondary menu
● Sidebar left and Sidebar right ($left and $right) are now Sidebar

first and Sidebar second

What's new in Drupal 7

● Little things (cont.)
● Several variables removed (search, mission statement, footer

message); search box is now a block
● Clear-block class is now Clearfix
● Title prefix and Title suffix variables
● CSS files loaded by LINK and @import (gets around IE limit

of 31 linked stylesheets)

● Complete list of changes:
http://drupal.org/update/themes/6/7

http://drupal.org/update/themes/6/7%20

Tree of theming

.info file

page.tpl.php

CSS

JavaScript

Template
suggestions

template.php

Render Arrays
theme

functions

Process

1. Create folder structure

2.Create Info file

3. Create page.tpl.php

i. Template variables

ii. Regions

4. Add CSS

5. Advanced:

i. Template overrides

ii. Render Arrays

iii. Custom theme functions

iv. JavaScript

Folder Structure

● Theme goes in a folder in
sites/all/themes or
sites/(yoursite)/theme

● Useful to create separate folders
for CSS, images, scripts,
templates

The info file

● Tells Drupal basic information about your theme:
● Name + Description (shows up in Appearance area)
● Drupal version
● Template language
● Regions
● CSS Files
● Scripts
● Features

Sample .info file

Creating the .info file

● Text file with .info extension

● Items defined in name/value pairs

● Features – options available in the Apperance/Settings
admin area

● Toggle logo, site name, etc.; upload logo or shortcut icon
● Not to be confused with Features (the module)
● Only features listed in your .info file will appear in the admin

interface (leave it out to include all features)
● Only listed features will provide variables to page.tpl.php

● Documentation page: http://drupal.org/node/171205

http://drupal.org/node/171205

.info file

page.tpl.php

CSS
● The heart of your theme

● Defines the basic template
used for the site

● Default page.tpl.php is
complicated and confusing

The page.tpl.php

Building a page.tpl.php

● Much like coding a regular HTML template

● Process:

1. Create empty page.tpl.php file

2. Define basic HTML structure (div wrapper, header,
footer, content area, etc.)

3. Add variables for basic page elements

4. Add regions

Page.tpl.php variables

● Listed in the default page.tpl.php or at
http://api.drupal.org/api/drupal/modules!system!page.tpl.php/7

● Add common elements to your page:
● Site identity (name, logo, slogan, url to front page)
● Navigation (main menu, secondary menu)
● Page content (title, messages, tabs, etc.)
● Utility variables (base path, is_front, logged_in, etc.)

http://api.drupal.org/api/drupal/modules!system!page.tpl.php/7

Building a page.tpl.php

● Add variables in PHP

● Some variables can be printed as-is:

 <?php print $site_name ?>

● Variables that are arrays (see documentation page), need to
be wrapped in the render() function:

 <?php print render($tabs); ?>

● Variables that may not be present should be wrapped in
conditionals:

 <?php if ($tabs): ?>
 <?php print render($tabs); ?>
 <?php endif; ?>

Building a page.tpl.php

● Add variables in PHP

● Some variables can be printed as-is:

 <?php print $site_name ?>

● Variables that are arrays (see documentation page), need to
be wrapped in the render() function:

 <?php print render($tabs); ?>

● Variables that may not be present should be wrapped in
conditionals:

 <?php if ($tabs): ?>
 <?php print render($tabs); ?>
 <?php endif; ?>

Defining Regions
● This is where Drupal can put stuff using the blocks interface

● Examine design to determine where you need to be able to add content
through the user interface

● Defined in .info file

 regions[header] = Header

● Output in page.tpl.php

 <?php print render($page['header']); ?>

● If region may or may not contain content, wrap with a conditional:

 <?php if ($page['header']): ?>

 <?php print render($page['header']); ?>

 <?php endif; ?>

● Standard region names: header, footer, content, sidebar_first,
sidebar_second

Add CSS
● Add links to CSS files in the .info file

● Can be placed in a separate folder

● Can use media queries
stylesheets[print][] = css/print.css
stylesheets[screen and (max-width: 600px)][]

= css/layout-smallscreen.css

● IE Conditional Stylesheets: two options:
● Theme preprocess function
● Conditional Stylesheets module (add in .info file)

● Just like coding regular CSS
● use developer tools to find Drupal's class and id names

Advanced theming: In the treetops

JavaScript

Template
suggestions

template.php

Render Arrays

theme
functions

Overriding Drupal's HTML

● Where did that code come from?
● Template files or theme functions (provided by core or

contrib modules)

● How do you know?
● Guess

– Big stuff has a template file (e.g. node, block, comment, view)
– Small, repetitive stuff uses theme functions (e.g. menu, links)

● Views tells you (Advanced > theme information)
● Devel Themer

Template files

● Template files are HTML + PHP code with .tpl.php
extension

● Drupal will always fall back to the default template if
you don't specify one in your theme

● Works like CSS: levels of specificity
● Drupal will use the most specific template

● Copy template to your theme folder; keep the same
file name

● List of templates provided by Drupal core:
http://drupal.org/node/190815

http://drupal.org/node/190815

Template suggestions

● Can override core templates for specific cases, e.g.:
● Node template for a node type or a specific nid
● Block template for a region or a specific block
● Field template for a content type or a specific field
● Taxonomy/term template for a vocabulary or a specific

term
● Comment template for a node type
● Many more!

Template suggestions

● General pattern: core-template—case.tpl.php
● e.g. node—page.tpl.php, comment—blog.tpl.php,

field--field_thumbnail_image.tpl.php
● Note the two dashes

● Documentation: http://drupal.org/node/1089656

● Devel themer also provides a list of possible template
files

● Remember:
● Clear the cache after adding a new template suggestion
● Drupal will use the most specific template

http://drupal.org/node/1089656

Render Arrays

● Rearrange fields and other content parts (e.g. links,
comments) within the template

● Everything in a node is in the $content array,
including body, other fields, comments, links

● By default, will display according to the order set in
node type's Manage Display settings

● Can hide items in the array to be displayed elsewhere

● Why? Fuller control over HTML structure; can change
the order or add structural mark-up around groups of
fields

Render Arrays

● Hide a something when the $content variable is
rendered

 hide($content['comments']);

● Render it where you want it to appear

 <?php print render($content['comments']); ?>

● Regions and some template variables are also output
using render()

● Documentation: http://drupal.org/node/930760
(from Developer's guide)

http://drupal.org/node/930760

Customizing theme functions

● Go in template.php file

● Find relevant function on api.drupal.org

● Copy function to template.php

● Rename with your theme name

● Customize

● Lots of snippets available on drupal.org and elsewhere

JavaScript

● Add in the same way you add CSS in the .info file:

● jQuery is included with Drupal core

● Wrap with closure + Behavours:
// Using the closure to map jQuery to $.
(function ($) {
 // Store our function as a property of Drupal.behaviors.
 Drupal.behaviors.yourBehaviours = {
 attach: function (context, settings) {

 (your JavaScript here)

 }
 };

}(jQuery));

● Documentation: http://drupal.org/node/171213

http://drupal.org/node/171213

Sample JavaScript
(function ($) {

 Drupal.behaviors.waterlooBehaviours = {

 attach: function (context, settings) {

 $("#block-search-form .form-text").attr("value", "Search");

 $('#block-search-form .form-text').focus(function() {

 if($(this).attr("value") == "Search") {

 $(this).attr("value", "");

 }

 });

 $('#block-search-form .form-text').blur(function() {

 if($(this).attr("value") == "") {

 $(this).attr("value", "Search");

 }

 });

 }

 }

})(jQuery);;

Creating Subthemes

● Best option for customizing existing themes

● Can be chained

● Define the parent theme in the .info file:
 base theme = themeName

● Inherits everything except region definitions

● Like a regular theme, only you are building on an
existing theme rather than Drupal's default output

● Documentation: http://drupal.org/node/225125

http://drupal.org/node/225125

Finishing touches

● Screenshot
● Shows up in the Appearance admin

area
● Screenshot with file name

screenshot.png
● Standard dimensions 294 x 219

● Favicon
● A feature in the .info file
● Place in theme directory, called

favicon.ico

Theming Tips

● Customize as little as possible

● Provide documentation (in
comments and/or a separate
file)

● Drupal's CSS coding
standards:
http://drupal.org/node/302199

● (Try to) keep it simple!

http://drupal.org/node/302199

Looking ahead to Drupal 8

● Relevant Initiatives:

● HTML 5
http://drupal.org/community-initiatives/drupal-core/html5

● Blocks & Layouts everywhere
http://groups.drupal.org/scotch

● Separating module and theme CSS

● A new theme system?

● Recognition that this isn't very user-friendly
● Relevant Drupal.org issues:

– http://drupal.org/node/1499460
– http://drupal.org/node/1382350

http://drupal.org/community-initiatives/drupal-core/html5
http://groups.drupal.org/scotch
http://drupal.org/node/1499460
http://drupal.org/node/1382350

References

● How to create a simple Drupal 7 theme from scratch
http://www.apaddedcell.com/how-create-drupal-7-theme-scratch

● Drupal.org theming guide
http://drupal.org/documentation/theme

●

http://www.apaddedcell.com/how-create-drupal-7-theme-scratch
http://drupal.org/documentation/theme

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

